If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q-q^2=0.25
We move all terms to the left:
2q-q^2-(0.25)=0
We add all the numbers together, and all the variables
-1q^2+2q-0.25=0
a = -1; b = 2; c = -0.25;
Δ = b2-4ac
Δ = 22-4·(-1)·(-0.25)
Δ = 3
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-\sqrt{3}}{2*-1}=\frac{-2-\sqrt{3}}{-2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+\sqrt{3}}{2*-1}=\frac{-2+\sqrt{3}}{-2} $
| w-3.5=w+40° | | 2/5x-7=7/5x | | 13s-2s-7s+1=17 | | 14y+4=8y-1 | | (x+6)/18=(8/9)+((x-8)/8) | | 3x+4x-2=2x+4 | | 6x+15x=100 | | 14b+4b+b-19b+2b=14 | | 3c-6=27 | | 1/6m-5=1/2m | | 2w-16w-19w=8 | | x-9+18=2x-10 | | x-1+17=2x+1 | | 5x-27=3x-11 | | x+2+3x-3=7 | | 4(x+3)^2=36 | | 5x+4=7+2x | | 11g-g+20g+9g=12 | | w-7=w+40° | | y+14=67 | | z+11=21 | | 7x+3+20=12x+8 | | 2q=3/2 | | 15d-12d-d-d=13 | | -4+x/2=3 | | Y=-51-6x | | 2q-q^2=0.125 | | 5a+4a-16a=14 | | 5+x+2=5x+2 | | 4/5x+2=53 | | 4x+43=7x-26 | | 6w+3w-9w+w+4w=20 |